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A B S T R A C T

The performance and survival of macroalgae is largely determined by their ability to adjust to varying en-
vironmental conditions. In this study, we investigated the short-term response of the giant kelp Macrocystis
pyrifera to varying temperatures (6, 17 and 24 °C) and low and high nitrate conditions (5 μM and 80 μM nitrate)
on lipid and fatty acid levels. Results revealed that M. pyrifera was able to rapidly adjust to varying temperatures
by changing the saturation level of the fatty acid composition at low and high nitrate conditions. On a lipid level,
we observed interactive effects of temperature and nutrient conditions. Under high nitrate conditions,M. pyrifera
maintained the same lipid profile. However, under low nitrate and high temperature conditions, an increase in
free fatty acids (FFA) was observed, indicative of lipid degeneration at high temperatures. Results show that low
nitrogen concentrations can magnify the negative effects of short term temperature stress in the giant kelp M.
pyrifera. Our findings indicate that under rapid warming events, local nitrate availability might be a decisive
factor for the acclimation potential of M. pyrifera.

1. Introduction

The seaweed habitat in the coastal inter- and subtidal zone is
characterized by large and frequent fluctuations in abiotic conditions,
including temperature, light and nutrient availability [1]. However,
this natural environmental dynamic in coastal environments can be
under strong anthropogenic influence, causing major changes at global
(e.g., Ocean Warming, OW) and local (e.g., eutrophication) scales
[2–4]. The alteration of local regimes of nutrient availability as a result
of anthropogenic activities (e.g., agriculture, industry and sewage dis-
posal) can negatively impact marine organisms such as corals [5]. For
seaweeds, however, increased nutrient availability will play an im-
portant role in regulating responses to environmental stressors, such as
OW [6–8]. Sufficient inorganic nutrient input, particularly nitrate
(NO3

−) and phosphate (PO4
3−), are essential to support macroalgal

health [9], and can counteract the negative effects of stressful

conditions [7].
The current rates of OW, as well as the gradual increase in the

frequency and intensity of marine heatwaves [10], are influencing the
functioning, survival and local persistence of marine organisms
[11,12]. Marine heat waves can be a significant stressor for marine life
[7], especially in transition zones where organisms are at their upper
temperature limits, and can lead to mass mortality of whole populations
[13]. In recent years, seaweeds, especially large kelp species such as
Macrocystis pyrifera (L.) C. Agardh and Ecklonia radiata (C. Agardh) J.
Agardh (Order Laminariales) have exhibited a massive decline in var-
ious areas around the globe [11]. In most cases, these declines have
been associated in part with marine heatwave events [14,15]. Kelps are
ecosystem engineers [16] that create and support complex biogenic
habitats, provide food for various marine organisms and ecosystem
services in the form of carbon cycling and nutrient cycling [17]. In
temperate regions of both Northern and Southern hemispheres, the
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subtidal kelp M. pyrifera plays a crucial role to the functioning of the
coastal ecosystem, as a foundation species, food source and habitat
[18]. Therefore, the observed rapid declines in kelp forests can have
multiple downstream implications for the whole marine ecosystem
[19]. For M. pyrifera, nitrate has been identified as the main limiting
nutrient [20,21], influencing its physiological and life-history responses
during high thermal stress [22,23]. There is, therefore, a pressing need
to better understand kelp responses to stressors like temperature and
nutrient conditions and their interactions.

One major strategy of plants and algae to acclimate to changing
environmental conditions is the adjustment of the composition and
structure of cellular membranes [24]. Membrane lipids play a crucial
role in both temperature-sensing and acclimation, which is achieved by
altering the lipid and fatty acid profile [25–27]. High temperature can
lead to a “hyper fluidity” or disintegration of the lipid bilayer of cellular
membranes, with negative effects on cellular processes including pho-
tosynthesis [24]. However, organisms can counteract this by adjusting
the fatty acid composition towards higher proportions of saturated fatty
acids, helping to stabilize cellular membranes at high temperature
[26–28]. This can be achieved by reducing the activity of various de-
saturases or alternatively by the up-regulation of the de novo production
of saturated fatty acids (SFA) [29]. SFA, in comparison to mono- or
polyunsaturated fatty acids (MUFA and PUFA, respectively), have
higher melting points, and can sustain membrane stability at higher
temperatures.

In terrestrial plants high nitrate availability can alleviate negative
impacts of high temperature stress on a lipid level by reducing lipid
peroxidation ([30] and citations therein). For microalgae, there is an
interaction between nitrogen availability and lipids, whereby nitrogen
starvation results in increased lipid production [31]. Studies using
transcriptome sequencing in the red alga Pyropia have identified fatty
acids as important response for stress resistance [32]. But to the best of
our knowledge, for seaweeds there are no published studies on how
nitrate availability will affect such lipid based temperature responses
and acclimation. However, kelps have been shown to perform better in
response to heat stress under high nitrate conditions [23,33,34]. For
terrestrial plants, increased nitrogen availability can increase thermal
tolerance by facilitating an improved production of heat shock proteins
and increased levels of antioxidants [35,36]. We therefore hypothesize
that due to the facilitation of other temperature compensating me-
chanisms, under high nitrate availability, M. pyrifera will perform better
at high temperature conditions by adjusting membrane lipids and fatty
acids.

This study is builds on that of Fernández, Gaitán-Espitia, Leal,
Schmid, Revill and Hurd [34], which examined the thermal response of
M. pyrifera under high and low nitrate conditions, revealing that high
nitrate conditions can ameliorate the negative effects of high tem-
perature and support enhanced photosynthetic and growth rates [34].
The aim of this study was to determine if and how changes in the ni-
trogen status of M. pyrifera (deplete vs replete) can support biochemical
changes in the algae, which allow for an improved response to tem-
perature stress. To investigate this, using M. pyrifera that had been in-
cubated under two nitrogen conditions (5 μM and 80 μM nitrate) and
three temperatures treatments (6, 17 and 24 C), we examined the re-
sponse on the fatty acid and lipid levels. The temperature conditions
were chosen based on results of Fernández, Gaitán-Espitia, Leal,
Schmid, Revill and Hurd [34], covering a maximum temperature range
from 6 to 24 °C, where previous results showed positive growth and
other physiological parameters still showed good health of the samples.
We hypothesize that an exposure to different environmental conditions
for only three days will result in biochemical changes inM. pyrifera on a
lipid and fatty acid level. We also hypothesize that low nitrogen stress
will enhance potential detrimental effects of high temperature in M.
pyrifera. Results will help understand the short-term (~3 days) phy-
siological responses and adjustments at a cellular level to temperature,
and the mediation by nitrate in the ecologically important giant kelpM.

pyrifera.

2. Material and methods

2.1. Seaweed collection and experimental design

Young blades (of a size of ca. 15–18 cm) of M. pyrifera samples were
collected in the shallow subtidal (0–1.5 m) on Bruny Island (45°47′S,
170°43′E), Tasmania, Australia, in March 2016 and transported to the
laboratory in an insulated container filled with ambient seawater. At
the time of collection, temperature ranged from and 18.7–19.9 °C [34],
which was ca. 3–4 °C above average, caused by longest recorded marine
heat wave in Tasman Sea [37]. NO3− concentrations in surface waters
ranged from 0.14–0.53 μM NO3− [34].

Samples were taken from adult sporophytes, sampling the second
and third blades below the apical scimitar. In the laboratory, blades
were cleaned of visible epibionts by washing with 0.5 μm filtered nat-
ural seawater (NSW). Each individual blade was cut to a similar size of
ca. 6 cm length and 6 cm width with an initial fresh weight of
1.0 ± 0.2 g, at 2 cm from the neumatocyst/blade junction (meriste-
matic zone). Using small cuttings of the meristematic area of kelp is a
common approach for physiological experiments to understand kelp
responses to different environmental conditions [38]. After a healing
period of 12 h, blade sections were incubated for 3 days under low
(5 μM) and enriched-NO3

− concentrations (80 μM) at 17 °C to obtain
M. pyrifera blades with different nitrogen status, i.e. deplete and replete,
respectively. A 20 mM NaNO3 solution was utilized to provide the de-
sired NO3

− concentrations in each culture tank, and 100 mM PO4
− was

used to avoid P limitation during the experiment (5:1 N:P). Six blade
sections were placed into each of twelve 2 l-culture tanks, six con-
taining low-NO3−NSW and one containing enriched-NO3−NSW. Water
was bubbled with air and a saturating light intensity of
120–130 μmol m−2 s−1 was provided overhead by florescent white
tubes (Envirolux CE F28T5/4100K-120477 240V) set on a 12L:12D
photoperiod. Incident light was measured using a Li-Cor LI-1400 (LiCor
Biosciences, Lincoln, NE USA) data logger equipped with a flat under-
water radiation sensor LI-192.

After the incubation period, M. pyrifera blades previously incubated
under low and enriched NSW (i.e. N-deplete and N-replete blades, re-
spectively) were further incubated under seven different temperatures:
6-10-14-17-20-24-27 °C, and two nitrate concentrations: 5 μM and
80 μM. Of the 72 blades, 56 (28 of each treatment) were randomly
selected and placed into each of 56 Erlenmeyer flasks (volume 250 ml),
containing either low or enriched SW (blades from low N culture were
put into low N treatment and blades from high N treatment into high N
experimental vessels). Each 250 ml culture flask was randomly assigned
to one of the seven temperature treatments, with four replicates (n= 4)
for each temperature x N treatment. The culture flasks under each
temperature treatment were maintained in a controlled temperature
water bath for three days and subjected to a 12 L:12D photoperiod
under a saturating light intensity of 120–130 μmol m−2 s−1 provided
and measured as described in the pre-experimental incubations. After a
3-day incubation, M. pyrifera blades were harvested. Individual speci-
mens exhibited growth under all culture conditions apart from the 27 °C
temperature treatment [34]. Based on these findings and due to logistic
constraints preventing analysis of all samples, three temperature
treatments were selected (6, 17 and 24 °C) and three independent re-
plicate samples (n = 3) out of the four samples per treatment from high
and low NO3

− concentrations were randomly selected for analysis of
lipids and fatty acids in this experiment. The temperatures represent a
low winter (6 °C) and summer temperature (17 °C) encountered in the
natural habitat of the giant kelp samples in Tasmania. The high tem-
perature (24 °C) scenario was chosen because it was the maximum
temperature where positive growth was observed [34]. The harvested
biomass was frozen immediately and freeze-dried using a Labconco®
Freezone 4.5 freeze-drier unit.
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2.2. Lipid and fatty acid analysis

Total lipids were extracted from three independent replicates
(n = 3) per treatment, following a modified version of Bligh and Dyer
[39] from the dried and weighed seaweed tissue. Lipids were extracted
overnight using a one-phase methanol (MeOH): dichloromethane
(DCM): Milli-Q (2:1:08 v/v/v) solvent mixture. Phase separation was
achieved by addition of 10 ml of DCM and 10 ml of saline Mill-Q water.
The lower lipid-containing layer was drained into a round bottom flask
and solvent was removed using a rotary evaporator (ca. 40 °C). The
lipid extracts were transferred to pre-weighed vials and solvents were
evaporated under a constant stream of nitrogen gas. Total lipid contents
were determined gravimetrically.

For lipid class composition, an exact aliquot of the total lipid extract
was spotted on SIII chromarods (5 μm particle size). Samples were co-
eluted with a lipid class standard mix to determine the lipid class
composition. The mobile phase consisted of hexane:diethyl ether:glacial
acetic acid (70:10:0.1 v/v/v). Chromarods were developed for 25 min
and then dried at 50 °C for 10 min. The dried samples were analysed
using an Iatroscan Mark V TH10 (NTS instruments, USA) thin layer
chromatograph (TLC) with a flame ionisation detector (FID). Peak
identification was achieved by comparison with retention factors of co-
eluted standards. For quantification, the SIC480II IatroscanTM in-
tegrating software (System Instruments, Mitsubishi Chemical
Instruments) was used. The peak areas were transformed to mass per μl
spotted using pre-determined linear regression calculations.

For fatty acid analysis, an aliquot of the lipid extract was methylated
using MeOH:DCM:conc. HCl (10:1:1, v/v/v), with heating for 1 h at
80 °C. After cooling, 1 ml H2O was added and the resulting fatty acid
methyl esters (FAME) were extracted three times into hexane:DCM,
(4:1, v/v). The samples were analysed using gas chromatography (GC)
on an Agilent Technologies 7890 (Palo Alto, California, USA) GC cou-
pled with a flame ionisation detector (FID). Fatty acids were separated
on a non-polar EquityTM-1 fused silica capillary column
(15 m × 0.1 mm internal diameter, 0.1 μm film thickness). Agilent
ChemStation software was used for quantification of FAME peaks. The
identification of individual fatty acids were confirmed using a Finnigan
ThermoQuest GCQ (Thermo Finnigan LLC, San Jose, California, USA)
GC-mass spectrometer (MS) (GC–MS) system fitted with an on-column
injector and using Thermoquest Xcalibur software.

2.3. Statistical analysis

All the analyses were carried out in R version 3.5.3 using the GLM
(general linear model) function (stats package) with nitrate treatment
and temperature as the two fixed factors. Analysis of residuals using
diagnostic plots (residuals v. fitted plot and Normal QQ plot) indicated
that all models met statistical assumptions of independence, normality,
linearity and homoscedasticity. Data in the graphs and table are dis-
played as mean ± standard error, based on 3 replicates per treatment
combination. Results of the statistical analysis are displayed in S1.

3. Results

3.1. Lipid class composition

Results of the lipid class composition analysis (Fig. 1) showed sig-
nificant effects of both temperature and nitrate concentration as well as
interactive effects on the partitioning of lipids into different lipid
classes. Total lipid (TL) concentrations in the algae tissue ranged from
3.61–5.15% of DW (Table 1). As a temperature effect, there was a
significant increase of sterols (ST) observed with increasing tempera-
ture, almost doubling in its proportion of the TL, 3.6 to 6.9% at 6 and
24 °C, respectively. There was a significant interactive effect of tem-
perature and nitrate concentration on the proportions of polar lipids
(PL, includes phospholipids and glycolipids) (GLM, F2,12 = 5.335,

p < 0.05). Generally, PL decreased with increasing temperature (GLM,
F2,12 = 8.443, p < 0.01). This trend was much more pronounced in
the low nutrient treatment where proportions of PL decreased from
92.9% of TL to 86.8% of TL. Furthermore, there was a significant in-
teractive effect on proportions of free fatty acids (FFA) (GLM,
F2,12 = 4.747, p < 0.05) observed with increasing temperature
treatments under low nitrate concentrations: Proportions of FFA in-
creased from 1.4% to 3.3% (Fig. 1).

3.2. Fatty acid composition

The fatty acid profile of M. pyrifera (Table 1) consisted of ca.
15–27% SFA, 13–16% MUFA and 54–67% PUFA, with 16:0, 18:1n-9,
18:2n-6, 18:3n-3, 18:4n-3, 20:4n-6 and 20:5n-3 being the main fatty
acids present. No significant effects were detected for nitrate and
temperature x nitrate treatments of total lipids, SFA, MUFA or PUFA.
However, temperature had significant effects on the proportions of both
SFA (GLM, F2,12 = 10.166, p < 0.01) and PUFA (GLM, F2,12 = 7.864,
p < 0.01). SFA increased ca. two-fold under both nitrate concentra-
tions with increasing temperatures (Fig. 2). PUFA decreased from
around 66–67% of TFA to only around 54–55% of TFA at the highest
temperature treatment (Fig. 2 and Table 1).

4. Discussion

This study reveals that the nitrogen status of M. pyrifera modulates
the remodelling of membrane lipids in response to temperature, and
provides a cellular mechanism to explain the findings of Fernández,
Gaitán-Espitia, Leal, Schmid, Revill and Hurd [34] that high-tempera-
ture tolerance is improved under replete compared to deplete nitrogen
conditions. Under low nitrate concentrations, the decrease in polar li-
pids (PL) with increasing temperatures was much more pronounced,
with a concomitant increase in free fatty acids (FFA). Under high nitrate
concentrations, M. pyrifera maintains high proportions of PL and shows
no increase in FFA. Polar lipids are mainly incorporated into cellular
membranes [40], which implies that under high nitrate concentrations,
M. pyrifera maintained its lipid membrane and was able to support high
photosynthetic activity at increased temperatures [34]. Under low ni-
trate concentrations, M. pyrifera exhibited a potential destabilization of
those membrane components, which also explains the peak in FFA
under low nitrate and high temperature conditions.

Although FFAs can indicate an increased amount of signalling lipids,
it is mainly considered an indicator of lipid degradation [41,42]. In
seaweeds, high amounts of FFA have been, for example, detected in the
red alga Palmaria palmata towards the end of its growing season under
high summer temperatures, indicative of lipid degradation [42]. Under
nitrogen-replete conditions, M. pyriferamost likely was able to facilitate
other temperature protective responses, such as increased expression of
heat shock proteins and compounds with anti-oxidative properties,
which supported stability of cellular membranes [27,35,36]. The
changes in the lipid profiles also showed a general increase of sterols
with increasing temperatures. Sterols, mainly known through studies on
land plants, can act to reinforce membrane structure and are usually
produced in increased quantities under high temperature stress [43]:
here we reveal for the first time that M. pyrifera responds in a similar
way with sterols being increasingly metabolised to support membrane
stability under high temperature.

From seasonal field studies, it has been observed that macroalgae
adjust their fatty acid composition to the ambient temperature condi-
tions by adjusting the level of unsaturation of the fatty acids [27,44,45].
Macrocystis pyrifera exhibited a fatty acid profile distinctive of brown
algae with 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 18:4n-3, 20:4n-6 and 20:5n-
3 as the main components [27,46,47], but exhibited an increase in the
level of saturation with increasing temperatures. The fatty acid profile
exhibited a decrease in the percentage of PUFAs with increasing tem-
peratures, which was balanced by an increase in SFA. A higher level of
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Fig. 1. Lipid class composition [as % of total lipids] of Macrocystis pyrifera at 6, 17 and 24 °C and under low (5 μM NO3
−) and high (80 μM NO3

−) nitrate
concentrations. Data displayed as mean (n = 3) for hydrocarbons (A), triacylglycerol (B), sterols (C), free fatty acids (D), and polar lipids (E) ± standard error.

Table 1
Fatty acid contents and profile ofMacrocystis pyrifera cultured at 6, 17 and 24 °C and under low (5 μMNO3

−) and high (80 μMNO3
−) nitrate concentrations. TFA and

lipid contents are expressed as % of DW. Fatty acids are expressed as % of total fatty acids (TFA). All values are given as mean (n = 3) ± standard error. SFA,
saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. DW, dry weight.

Temperature 6 17 24

Low High Low High Low High

Nitrate
Lipids % of DW 5.15 ± 0.34 4.77 ± 0.72 3.78 ± 0.29 3.61 ± 0.63 4.07 ± 0.47 4.63 ± 0.54
TFA % of DW 1.14 ± 0.19 0.86 ± 0.16 0.66 ± 0.06 0.90 ± 0.28 0.95 ± 0.17 1.00 ± 0.09
14:0 0.57 ± 0.32 0.18 ± 0.12 1.11 ± 1.04 2.34 ± 1.04 2.75 ± 0.16 2.64 ± 0.27
16:0 13.73 ± 0.88 12.50 ± 0.31 18.26 ± 3.16 17.36 ± 2.34 22.58 ± 1.85 22.05 ± 2.56
18:0 1.35 ± 0.01 1.29 ± 0.23 1.08 ± 0.15 1.11 ± 0.04 1.10 ± 0.11 1.20 ± 0.28
20:0 0.54 ± 0.03 0.91 ± 0.39 1.46 ± 0.30 1.15 ± 0.38 1.26 ± 0.54 0.85 ± 0.10
22:0 0.11 ± 0.02 0.12 ± 0.01 0.26 ± 0.07 0.10 ± 0.05 0.18 ± 0.04 0.12 ± 0.07

SFA 16.30 ± 1.05 15.00 ± 0.16 22.16 ± 4.43 22.05 ± 2.96 27.87 ± 1.88 26.86 ± 3.05
16:1n-5c 0.13 ± 0.02 0.26 ± 0.11 0.07 ± 0.02 0.10 ± 0.02 0.13 ± 0.00 0.22 ± 0.09
16:1n-7c 0.55 ± 0.04 0.54 ± 0.03 0.70 ± 0.17 0.69 ± 0.11 0.66 ± 0.02 1.38 ± 0.52
16:1n-9c 0.18 ± 0.05 0.05 ± 0.04 0.19 ± 0.12 0.33 ± 0.05 0.31 ± 0.09 0.50 ± 0.09
16:1n-13 t 0.82 ± 0.18 0.57 ± 0.10 0.79 ± 0.37 0.94 ± 0.09 1.14 ± 0.17 1.61 ± 0.38
18:1n-7c 0.10 ± 0.02 0.16 ± 0.02 0.15 ± 0.03 0.14 ± 0.02 0.17 ± 0.05 1.08 ± 0.78
18:1n-9c 13.53 ± 1.37 14.65 ± 1.21 14.16 ± 1.68 11.06 ± 1.1 13.06 ± 0.81 11.05 ± 1.87

MUFA 15.30 ± 1.11 16.24 ± 1.03 16.05 ± 0.99 13.28 ± 1.12 15.48 ± 0.79 15.84 ± 1.81
18:2n-6 6.57 ± 0.59 7.23 ± 0.27 5.64 ± 0.42 7.03 ± 0.70 5.00 ± 0.32 6.80 ± 0.82
18:3n-3 5.22 ± 0.43 4.28 ± 0.54 3.60 ± 0.66 4.00 ± 0.62 3.36 ± 0.56 4.13 ± 1.00
18:3n-6 1.88 ± 0.28 1.37 ± 0.36 0.62 ± 0.05 1.33 ± 0.05 0.52 ± 0.05 0.68 ± 0.14
18:4n-3 8.79 ± 0.84 6.21 ± 1.13 5.80 ± 1.38 8.69 ± 1.19 6.17 ± 0.93 6.90 ± 1.86
20:2n-6 0.14 ± 0.03 0.21 ± 0.04 0.23 ± 0.05 0.19 ± 0.02 0.19 ± 0.03 0.16 ± 0.06
20:3n-6 1.68 ± 0.06 1.67 ± 0.10 0.89 ± 0.15 1.28 ± 0.11 0.61 ± 0.04 0.56 ± 0.14
20:4n-3 0.88 ± 0.01 1.28 ± 0.19 1.41 ± 0.06 1.07 ± 0.09 1.66 ± 0.22 1.32 ± 0.17
20:4n-6 29.46 ± 1.16 31.12 ± 0.51 28.58 ± 3.87 26.34 ± 1.11 26.50 ± 1.07 23.84 ± 2.46
20:5n-3 12.20 ± 0.94 13.89 ± 0.30 12.58 ± 1.77 12.56 ± 1.36 10.11 ± 0.81 10.56 ± 0.59

PUFA 66.83 ± 0.28 67.26 ± 1.11 59.35 ± 3.89 62.49 ± 3.90 54.11 ± 2.12 54.93 ± 4.87
n-3 PUFA 27.10 ± 0.84 25.67 ± 1.65 23.39 ± 3.19 26.32 ± 3.14 21.29 ± 2.24 22.90 ± 3.56
n-6 PUFA 39.73 ± 0.86 41.59 ± 0.58 35.96 ± 3.69 36.17 ± 1.65 32.82 ± 0.85 32.03 ± 3.13
Other 1.57 ± 0.25 1.51 ± 0.12 2.44 ± 0.40 2.18 ± 0.13 2.54 ± 0.18 2.37 ± 0.26
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unsaturation at low temperatures supports the maintenance of mem-
brane fluidity under reduced temperature conditions [48,49]. At high
temperatures, saturated fatty acids can stabilize the membranes and
increase thermal tolerance [50]. Both processes, the desaturation of
fatty acids and the reverse process, involve the use of energy to support
the oxidation-reduction processes occurring [51]. Results from this
study show for the first time in seaweeds that such changes can be
implemented over a relatively short time frame of 3 days.

Studies on land plants (Arabidopsis thaliana) show that the initial
acclimation in membrane fatty acid composition to higher temperatures
occurs 60–100 h after the temperature change (from 22 °C to 29 °C),
and changes in fatty acid composition were still observed after 250 h
[52]. In our study, we also saw that changes in the fatty acid profile can
be implemented in M. pyrifera after only three days (72 h). However,
the fatty acid profile of M. pyrifera at the lower temperature (6 °C)
treatment exhibited smaller within-replicate variation compared to the
two higher temperature treatments (17 and 24 °C). The increase in
desaturation of the fatty acids can be implemented by up-regulation of
desaturase activity, but the reverse process usually involves de novo
synthesis of saturated fatty acids and the suppression of desaturase
activity [29]. Our 3 day experiment was most likely long enough for the
adjustment to low temperatures (6 °C) by an increased activity of de-
saturases, but at higher temperatures (17 °C and 24 °C) the results most
likely represent a transition period to further biochemical adjustments.
Results from seasonal studies show that seaweeds generally exhibit
changes in the composition of fatty acids, with higher concentrations of
PUFA during winter and more SFA during the warmer months [53,54].
However, very little is known on how fast such changes can occur. Most
studies which aim at investigating the effects of different environmental
drivers on biochemical composition, culture seaweeds from weeks to
years [55,56], although Al-Hasan, Hantash and Radwan [57] showed
that a one week acclimation at different temperatures can result in
changes in fatty acids in green, brown and red algae. Our study shows
that young blades of M. pyrifera can implement such changes within
3 days, and potentially even faster, in order to maintain cellular
membrane fluidity at different temperature and nutrient conditions.

Our results specifically aimed at understanding the short-term re-
sponse of M. pyrifera to various temperature treatments under high and
low N status of the seaweed tissue. We recognize that M. pyrifera, with
the small blade pieces even showing positive growth under 24 °C in this
experiment, would most likely not sustain longer exposure under such
high temperatures. Experiments with larger blade sections and longer
experimental exposure periods have shown that at lower temperatures
of around 20 °C, detrimental effects on M. pyrifera can been observed
[58]. Also in a natural setting, other stressors such as grazing and UV

stress can additionally weaken seaweed response to high stress condi-
tions [58,59]. Further studies, including larger algal parts and a longer
experimental duration aiming at mimicking natural conditions, will be
needed to further elucidate how the observed mechanistic differences
will translate to responses in the natural habitat.

5. Conclusions

Macrocystis pyrifera has effective mechanisms to adjust its fatty acid
profile rapidly (≤72 h) to a wide temperature range at both high and
low nitrate availability. However, an increase in FFA indicated a det-
rimental effect on the seaweed under high temperature and low nitrate
concentrations. Further, low nitrate concentrations can magnify the
negative effects of short-term temperature stress. From a physiological
perspective, the combination of two stressors - low nutrients and high
temperature - seems to have a negative synergistic effect on M. pyrifera
compared to only one stressor on its own. From an ecological per-
spective, this indicates that local impacts such as low nutrient condi-
tions might enhance the impacts of high temperature on M. pyrifera, at
least on a short time scale. Large assemblages of M. pyrifera have dis-
appeared on the east coast of Tasmania after the 2015/2016 heat wave
[37]. This marine heatwave lasted for a total of 251 days reaching a
maximum intensity of 2.9 °C above previously reported daily mean sea
surface temperatures with an maximum temperatures over 19 °C on the
East Coast of Tasmania [37]. Increased incursions of the East Australian
Current (EAC) during heat waves in eastern Tasmania not only influ-
ence temperature but have also affect nutrient loading, because the EAC
is nutrient-poor (e.g. often ≤1 μM nitrate, particularly in summer)
[60], which might have enhanced the rapid decline in kelps in this area.
Our findings indicate that under rapid warming events such as marine
heat waves, local nitrate availability might be a decisive factor for the
acclimation potential and survival of M. pyrifera.
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