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ABSTRACT
Kappaphycus and Eucheuma, known collectively as ‘eucheumatoids’, are two related genera of red
seaweeds which currently lead the rankings for volume of global production of farmed macroalgae.
Since 2009, the combined cultivated volume of these carrageenophytes overtook that of the brown
seaweeds Laminaria (Saccharina) and Undaria for global production tonnages, according to statistics of
the Food and Agriculture Organization of the United Nations (FAO). The Southeast Asian region,
particularly Indonesia, the Philippines, Malaysia, Tanzania, and East Africa are the major producers of
eucheumatoid biomass. Despite several success stories of red seaweed cultivation and the economic
and socioeconomic value of their ecosystem services, there remain a number of salutary lessons to be
learned from ‘agronomic’ practices applicable to their extensive cultivation. These case studies should
be further developed, analysed, and adopted as best-practice recommendations for future socioeco-
nomic prosperity, as well as both economic and environmental sustainability. In this review, we propose
the use of the term ‘phyconomy’ (i.e. large-scale production of marine macroalgae for economic and
industrial purposes) as an alternative to the term agronomy (i.e. terrestrial plant production).
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INTRODUCTION

The term ‘phyconomy’ is hereby coined to describe a general
concept that embraces large-scale, sustainable seaweed farming
for economic benefit in coastal waters. Phyconomic lessons
learned from the successful mass cultivation of red seaweeds
are guidelines which can be applied to technology transfer and
capacity building for other forms of commercial marine macro-
algal production. A number of important phyconomic issues are
highlighted in this article. They are listed in brief immediately
below and will be presented later in greater detail. These issues
include the following:

(1) There are a number of important lessons to be learned
from the use of repeated vegetative propagation of bio-
mass of Kappaphycus alvarezii (Doty) Doty and its long-
term production as a monocrop via extensive surface
cultivation methods. These practices resulted in low
genetic variation and loss of strain vigour which has
further ramifications in that the biomass became suscep-
tible pathogens, diseases and epi- or endophyte
infestations.

(2) Lack of development in commercial utilisation of
local seaweed biodiversity led to seemingly unneces-
sary introductions of nonindigenous eucheumatoids
and their unfettered expansion into new farming

areas. Some of these introductions have caused ser-
ious environmental issues as invasive organisms;
however, the scale of perturbations is debatable.

(3) Failure to innovate new techniques of eucheumatoid
farming and indigenous utilisation of raw materials
merely fuelled expansion of commercial operations
through the unregulated transfer of seedlings to new
farming areas to meet increasing global demands.

(4) After expansion of operations, many current tropical
carrageenophyte farming efforts are still dependent on
rudimentary, labour-intensive technologies, i.e.
‘drudge’ labour used to tie cuttings onto lines, and the
labour required for harvest.

(5) Use of plastic attachments (i.e. tie-ties; TTs) for hang-
ing seedlings on cultivation lines contributes to plas-
tic pollution in the oceans. There are also costs
associated with their removal during processing.

(6) There is considerable promise with the recently intro-
duced tubular net, especially as practised by innova-
tive farmers in Brazil, Indonesia and India.

(7) Given the potential value of the crops, there seems to
be stagnation in the innovation of eucheumatoid sea-
weed cultivation as a whole. There is considerable
need for additional research and development and
investment (commercialisation) for production of
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eucheumatoid biomass by the carrageenan industry,
which still focus largely on the rheological properties
of gels for processed food applications.

(8) It is encouraging that multistream zero effluent pro-
duction and processing techniques are gaining
ground in India and Indonesia.

A shift in innovation from simple cultivation methods to
a more technical phyconomic approach for eucheumatoids is
imperative in order to sustain positive outcomes, such as:

(1) enhancement of human resource capacity;
(2) diversified livelihoods;
(3) adoption of sound, ecosystem-based management

principles;
(4) sustainability of operations, including resiliency to

climate change; and
(5) secured environmental and crop sustainability and

global food security.

Inasmuch as the above issues are lessons for carrageenophyte
production, the same phyconomic principles apply to large-
scale cultivation of other common seaweed crops e.g.
Porphyra/Pyropia, Laminaria/Saccharina and Undaria (see
Hwang et al. 2019).

PHYCONOMIC LESSONS TO BE LEARNED AND
TRANSFERRED FROM EUCHEUMATOID FARMING

Eucheumatoid farming – that is, farming of Kappaphycus spp./
strains and varieties and, in particular, Eucheuma denticulatum
(N.L.Burman) Collins & Hervey – has been practised commer-
cially in the Philippines, the origin of such activities, since 1970
(Doty 1973; Doty & Alvarez 1975; Parker 1974). Such activities
expanded rapidly and over a wide geographic range. Now, more
than 30 countries are involved in the production of marine
crops. These have been so successful collectively that the dried,
raw material biomass has become commoditised (Hayashi et al.
2017). Tens of thousands of fishers living in coastal commu-
nities, often in economically deprived areas, are engaged in sea-
weed farming. This is often the case in Southeast Asia, notably
the Philippines, Indonesia andMalaysia and, to a lesser extent, in
Vietnam, Cambodia and Myanmar, and in eastern Africa; for
example, Tanzania. The number of individuals involved in farm-
ing carrageenan-containing seaweeds globally is somewhat of
a conjecture, sometimes exaggerated to be in the millions. We
believe that number is more likely to be tens of thousands of
family units of varying size. The socioeconomic benefits would
therefore be derived by a larger number of people and there
would be knock-on economic benefits derived from the goods
and services being purchased or traded in the coastal economies
for the consumable required (e.g. wood, PVC, string, boats, fuel,
etc.). In addition, some of the derived income is commonly used
to fund upgrades to transportation, education and healthcare
infrastructure and services. Seaweed farming has brought tre-
mendous socioeconomic returns for some seaweed farming
communities, and these should be held up as examples worth
emulating (for further details and positive ‘return on invest-
ment’, socioeconomic assessments, see Alih 1990; Doty 1986;

Firdausy & Tisdell 1991; Hurtado et al. 1996, 2001; Samonte
2017; Samonte et al. 1990; Smith 1986; Smith & Pestaño-Smith
1980; Valderrama et al. 2013).

Despite many challenges, there have been several success
stories on phyconomy of eucheumatoids since its inception
almost 50 years ago. However, too many overhyped and
overly optimistic stories have led to unfettered and unwar-
ranted expansion of eucheumatoid farming to new geographic
areas, rather than focusing on local species and strains as
cultivars and/or adapting operations to specific local condi-
tions. Below is a list of the most important phyconomic
lessons learned. These can be further improved, thereby max-
imising environmental and economic benefits from eucheu-
matoid phyconomic activities. As with terrestrial agronomy,
marine phyconomy is an ever-evolving practice which
becomes a true art as practised by the farmer. It is often
said that the farmer’s best tool is his shadow, as in constant
vigilance and attention to crops. This is well illustrated in the
preface to the Cebu International Seaweed Symposium, which
includes a photograph of Professor Maxwell Doty examining
new seedlings in the field.

RELIANCE ON THE USE OF REPEATED VEGETATIVE
PROPAGULES

Vegetative seaweed propagation refers to the process of asex-
ual reproduction whereby a fragment of a parent thallus (i.e.
a cutting) is taken (broken off) or cut in order to produce
material for the next cycle of cultivation. Essentially, this is
a form of in-field selection of thalli by farmers based on size
and/or colour, deemed best suited to particular sites. These
fragments, known as cuttings, ‘seedlings’ or propagules, can
grow into mature plants over a cycle of 30, 45 or 60 days
depending on site or financial needs of growers. Usually,
a piece of thallus weighing a kilogramme or more can be
split into six to eight cuttings of c. 150 g each which then
serve as starters in a new cultivation cycle. There are many
different colour morphotypes of eucheumatoids (see Hayashi
et al. 2017) used in commercial cultivation.

It is our view that there was insufficient effort applied to
selecting new indigenous cultivars. If more effort had been put
into this initially – for example, by sponsored government or
industry research – it would not have been necessary to disperse
cultivation activities beyond the Philippines. As a consequence,
the high costs of shipping and relative cost of the cultivars would
have been avoided.

From the start of commercial cultivation of eucheumatoids
in 1970, repeated vegetative propagation has also been prac-
tised elsewhere in the world. Often, initial stocks were as little
as a few kilogrammes, rapidly relocated (shipped by air in
coolers), so that selection of materials for new, remote areas
was from an extremely limited genetic base.

Earlier studies reported propagule production from spores
(Azanza-Corrales & Aliaza 1999; Azanza-Corrales & Ask 2003;
Bulboa et al. 2007, 2008; Luhan & Sollesta 2010; Roleda et al.
2017) and from newly established micropropagation techniques
for cultivation purposes; for example, tissue culture (Ali et al.
2018a; Dawes & Koch 1991; Dawes et al. 1994, 1993; Hayashi
et al. 2008; Hurtado & Biter 2007; Hurtado & Cheney 2003;
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Hurtado et al. 2009; Luhan & Mateo 2017; Neves et al. 2015;
Reddy et al. 2003; Sulistiani et al. 2012; Tibubos et al. 2017;
Yeong et al. 2014; Yong et al. 2014, 2015; Yunque et al. 2011;
Zitta et al. 2013). Because of the technical sophistication
required, these were neither embraced by farmers nor, perhaps
surprising, sponsored by the very industry which was dependent
on generation of the rawmaterials for processing. Hopefully, this
situation is set to change (see also the Red Seaweed Promise
project for the sustainable supply of raw materials for Cargill;
https://www.cargill.com/sustainability/sustainable-seaweed,
accessed 05/04/2019). There are now a few small demonstration
farms using propagules generated from micropropagation tech-
niques in a few areas of the Philippines (Capacio, personal
communication; Luhan, personal communication); Malaysia
(Ali, personal communication) and Vietnam (N. Tran, personal
communication). However, these need to be scaled up and
appropriately sized tomeet future production needs of the global
industry. The success of such techniques could be similar to the
findings of Gupta et al. (2018) using enzymes for the production
of protoplasts (i.e. single-celled initials which become seedlings)
in Ulva sp. that provided a fivefold improvement, without com-
promising protoplast yield and viability. The phyconomy of
eucheumatoids should be dramatically improved by transferring
the technology used in Ulva sp. cultivation.

The continued use of repeated, vegetative propagules (without
sexual union of gametes) and virtual monocropping (without
fallow periods) for the commercial cultivation of eucheumatoids
led to the loss of strain vigour by the most commonly farmed
seaweed cultivars (see Hayashi et al. 2017). This subsequently led
to susceptibility of the seaweeds to microbial pathogens, which in
turn led to crop diseases and pest infestations.

SUSCEPTIBILITY TO DISEASE AND EPIPHYTE
INFESTATIONS

Disease in eucheumatoids appeared as abnormal changes in
form, physiology, integrity and/or behaviour of the seaweeds.
These were direct responses to abiotic stresses such as cultiva-
tion close to the water surface and monocropping. A seaweed
is considered diseased when it is continuously disturbed by
biotic stresses in the form of causal agents which result in
abnormal physiological processes that disrupt the normal
form and structure, growth, and performance of plants,
including reproductive success. There are five levels of patho-
logical responses in eucheumatoids:

(1) Normal physiological functions of the seaweed are
disturbed when affected by pathogenic organisms
and or environmental factors (i.e. pH, surface sea-
water temperatures [SST], irradiance/UV exposure).

(2) Initially, seaweed defence mechanisms respond phy-
siologically (i.e. evolution of hydrogen peroxide) to
the presence of disease-causing agents, particularly at
the site of infection.

(3) The responses then become more widespread and
histological changes may take place near the infection
site (e.g. the presence of ‘goosebumps’).

(4) Changes are expressed as symptoms of a known dis-
ease which can be visualised macroscopically.

(5) As a consequence of the pathology, seaweed growth is
reduced, phycocolloid quality declines, or the infected
seaweed may die or be lost from the cultivation site
due to fragmentation of the thallus.

The traditional extensive approaches to Kappaphycus and
Eucheuma cultivation exposed plants to many biological and
environmental elements which could promote or hinder their
growth and development. The earliest ‘disease’ identified in
Kappaphycus and Eucheuma was ‘ice-ice’ (Uyengco et al.
1981). This was first described as an onset of limited greening
of a segment of thallus, followed by a clearly green segment the
next day. After a fewmore days, the infected tissues became very
pale and finally entirely bleached or ‘whitened’ (hence alike to
‘ice’, from which the term was coined). The infected segments
could remain attached for a day or two but soon broke away and
disintegrated, separating adjacent parts of the thallus, which
appear otherwise unaffected/uninfected. Carrageenophyte farm-
ers became familiar with this ‘disease’ and developed indigenous
knowledge of what to do in cases of an outbreak. Normally, they
cut off the affected segments and let the seemingly unaffected
thallus continue to regenerate and regrow, albeit with reduced
overall productivity. Reports of ‘ice-ice disease’ in Kappaphycus
and Eucheuma include Largo et al. (1995a, 1995b), Mtolera et al.
(1996), Pedersén et al. (1996), Butardo et al. (2003), and Achmad
et al. (2016). The involvement of a marine-derived fungus as the
potential causative agent of ice-ice disease in K. alvarezii and
K. striatus was reported by Solis et al. (2010).

As early as 2002, a more severe problem in tropical carragee-
nophyte farming was identified as ‘epiphytic’ Polysiphonia/
Neosiphonia infestations (Largo 2002) from the Calaguas Islands,
Camarines Norte, Philippines. The same problemwas observed in
Tawi-Tawi seaweed farms as early as 1976 (Hurtado 2005).
Unfortunately, at that time, neither the farmers nor the colloid
industry considered it a major problem to be addressed. Had
investments beenmade earlier, perhaps the current scenario facing
eucheumatoids would be very different. Instead of addressing the
issues of marine pests in an integrated phyconomicmanner (Ingle
et al. 2018), as done in terrestrial agronomy, it was ‘easier’ to
expand the areas of farming sites. Polysiphonia and Neosiphonia
are red epiphytic filamentous algae (Ask & Azanza 2002) which
can penetrate deeply into the cortex of host tissues by rhizoids,
reaching the medullary tissue. As a consequence, the epiphytic
filamentous algae destroy host cells in the area around the infec-
tion site (Leonardi et al. 2006). In response, the host tissues change
their morphology to the epi-/endophyte to form cavities, which
further weakens the integrity of the tissues, and thalli fragment at
the infection sites.

Several later reports recorded Polysiphonia/Neosiphonia
infestations occurring in additional regions of the Philippines
and other Southeast Asian countries (Critchley et al. 2004;
Hurtado et al. 2006; Vairappan 2006; Vairappan et al. 2008),
China (Pang et al. 2012, 2015), and Madagascar (Ateweberhan
et al. 2015; Tsiresy et al. 2016). The root cause of this widespread
problem was likely that seemingly uninfected, otherwise
‘healthy’ seedlings were widely traded and dispersed commer-
cially. These had unseen endophytic remnants of the polysipho-
nous red seaweed hitch-hikers. We hypothesise that the
epiphytes originated from unattached Sargassum spp.
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(Yamamoto et al. 2012) drifting on the surface, that had resident
epiphyticNeosiphonia and Polysiphonia spp. which subsequently
became entangled with the Kappaphycus tied to ropes near or at
the surface within the farms. Clearly, the situation was not under
control, and the negative impacts of these polysiphonous, endo-
genous hitch-hikers were unwittingly and easily spread from one
region to another within traded and dispersed infected seed
stocks. The practice was in part encouraged due to severe
shortages of seedlings, because of lack of investment and inno-
vation by industry and farmers.

Ice-ice disease and epi-/endophyte infestation were the
direct result of low genetic variability amongst the common
cultivars or strains of K. alvarezii and K. striatus (F.Schmitz)
Doty ex P.C.Silva (Halling et al. 2013). In effect, most farmers
had been using the same limited strain stock for almost
47 years, with only vegetative propagation. Over this period,
global production went from 1000 metric ton fresh weight (mt
fwt) in the 1970s to 11.95 million mt fwt in 2015, and is
conservatively projected to be 15 million mt fwt in 2020
(Food and Agriculture Organization of the United Nations
[FAO] 2017).

Production of propagules of eucheumatoids produced from
spores has not yet been adopted for commercial cultivation. This
compares unfavourably to investments made in the commercial
cultivation of cultivated seaweeds such as Hizikia (Pang et al.
2005, 2006), Ecklonia (Hwang et al. 2009), Palmaria (Pang &
Lüning 2006), Pyropia (Kim et al. 2016), Saccharina (Li et al.
2016), Sargassum (Hwang et al. 2006; Pang et al. 2009) and
Undaria (Hwang et al. 2011, 2014) which have variously pro-
duced gametophytes and sporophytes for seedlings, as developed
from sexual or asexually derived spores (i.e. meio- or mito-
spores). An understanding of basic seaweed reproduction
is a prerequisite to the success of such innovations in other
areas of phyconomic practice (i.e. nori and kelps).

Gachon (2017) described several strategies which could be
applied to control marine plant diseases: (1) nutritional inter-
vention; that is, making the host ‘stronger’ (i.e. increasing vig-
our) through administration of a biostimulant/bioeffector (van
Oosten et al. 2017) or a fertiliser dip administered as a pre-
outplanting soak; (2) breeding disease-resistant algal varieties;
and (3) challenging and countering the pathogen with micro-
organisms ‘friendly’ to the host. All of these phyconomic inter-
vention strategies have direct parallels to land-based agronomic
practices (i.e. use of seed treatments, breeding and selecting
productive cultivars, production of hybrid plants, applications
of fertilisers and biostimulants and plant protection agents, etc.).
So far, phyconomic interventions have been restricted largely to
use of a biostimulant/bioeffector which has been reported as
successful in Kappaphycus in the Philippines and Malaysia and
is discussed below.

Under conditions of multiple abiotic stresses – for example,
extreme fluctuations in SST, salinity and pH – K. alvarezii
releases massive amounts of H2O2 into the surrounding sea-
water. This possibly impairs efficient and immediate responses
of pivotal H2O2-scavenging activities of catalase and ascorbate
peroxidase and can culminate in short-term, exacerbated levels
of protein and lipid oxidation (Barros et al. 2006). Such
responses can reduce resistance of the seaweed to the epi/endo-
phyte Neosiphonia spp. and epiphytic Polysiphonia spp.

Few studies have been undertaken to mitigate the problems
of ice-ice disease and incidences of epi/endophytes in
Kappaphycus. The reports of Loureiro et al. (2009, 2012),
Borlongon et al. (2011), Hurtado et al. (2012), Marroig et al.
(2016) and Ali et al. (2018b) highlight the potentially bene-
ficial application of a seaweed extract biostimulant (i.e.
Ascophyllum Marine Plant Extract Powder, or AMPEP), man-
ufactured from the temperate, intertidal fucoid Ascophyllum
nodosum (Linnaeus) Le Jolis. This extract enhanced the vigour
and health status of pretreated carrageenophyte thalli; it accel-
erated growth and pigmentation, and simultaneously con-
veyed improved tolerance to abiotic and biotic stress factors
(i.e. expressing both biostimulant and bioeffector properties).
Borlongon et al. (2011) showed that dipping (i.e. a preplanting
soak) of Kappaphycus seedlings in a relatively low concentra-
tion of AMPEP (i.e. 0.1 g l−1), coupled with outgrowing the
seaweed at 50–75 cm below the water surface, significantly
lowered the incidence of a prevailing Neosiphonia infestation
(i.e. 6%–50%) compared to the undipped control thalli (10%–
75%). Loureiro et al. (2012) showed that pre-outplanting
administration of AMPEP reduced the effects of the surface
cleansing oxidative bursts (i.e. production of hydrogen per-
oxide) which can be negative for both the host and its epi-
phytes, especially in densely planted monocrop systems. This
was confirmed by Marroig et al. (2016) and Ali et al. (2018b)
when a much-reduced incidence of Neosiphonia and epibionts
was recorded in AMPEP-treated K. alvarezii. In essence, the
treated seaweed tissues acquired properties of improved resis-
tance to biotic stresses (as created by the endophytic
Neosiphonia spp.). Because AMPEP provides enhanced toler-
ance to biotic stresses, AMPEP may be considered
a bioeffector [as opposed to a biostimulant; see van Oosten
et al. (2017) for a review].

Luhan et al. (2015) showed that a short-term immersion of
Kappaphycus alvarezii in a high-nitrogen-containing medium,
applied before outplanting, increased growth, improved the
quality of the carrageenan and, more important, decreased the
occurrence of ice-ice disease. Thus, it seems that these varied
preplanting procedures primed the eucheumatoids and/or
enhanced their immunity to reduce the negative impacts of
the epi-/endophytic pathogens.

The susceptibility of farmed eucheumatoids to disease and
pest infestations might be due to their low genetic diversity, as
claimed by Halling et al. (2013) and Zuccarello et al. (2006).
However, Lim et al. (2014) showed that there was higher species
diversity in Southeast Asia. This is where many potentially valu-
able carrageenophyte species occur that were previously over-
looked for cultivation because of their morphological plasticity
and cryptic nature. Dumilag et al. (2016) also repeated a high
haplotypic diversity of farmed Kappaphycus in the Philippines.

The above-cited strategies using seaweed extracts and
nitrogen fertilisation in the pre-outplanting stage are some
of the tools adopted to reduce the incidence of disease and
pest infestations. Likewise, a framework for marine integrated
pest management in seaweed farming, as proposed by Ingle
et al. (2018), should be seriously considered for adoption.
Cottier-Cook et al. (2016) emphasised ‘characterization, con-
servation and exploitation of algal genetic resources towards
crop improvement, which also includes cost-efficient, non-
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invasive, parallelised growth measurement; and bioassays to
test for pathogen resistance’ as a primary future direction.
Such an approach would be a major strategy in safeguarding
the sustainability of red seaweed phyconomic activities in
developing countries (Cottier-Cook et al. 2016). It is expected
that this much-needed phyconomic initiative will produce
relevant research outcomes and commercial developments.

INTRODUCTION OF NONINDIGENOUS
EUCHEUMATOIDS INTO NEW FARMING AREAS

The relative ease, without major investments, and the success
of Kappaphycus and Eucheuma phyconomy in the Philippines
in the early 1970s (Doty 1973; Doty & Alvarez 1981;
Ricohermoso & Deveau 1979, and in Indonesia in the late
1980s, has been remarkable. This led rapidly to the somewhat
indiscriminate introduction of these genera to many other
countries with suitable subtropical-to-tropical coastal marine
environments.

Of the almost 30 countries where these seaweeds were
introduced (Ask et al. 2003; Hurtado et al. 2016), only
Kane’ohe Bay, Hawai’i and India have reported bioinvasion
issues caused by released fragments from cultivation sites and
their re-attachment to corals. The introduction of strains and
cultivars of K. alvarezii, in particular K. striatus and
E. denticulatum, to areas outside their natural geographic
range was with the best of intentions. Considerations included
research and evaluation, further commercial cultivation and
socioeconomic development of impoverished coastal commu-
nities. These were tried-and-trusted strains and species which
were known to bring economic gains to seaweed farmers, as
well as to the carrageenan industry (Porse & Rudolph 2017).

From 1974 to late 1976, these eucheumatoids were inten-
tionally introduced to the fringing reef surrounding the
Hawai’i Institute of Marine Biology at Coconut Island
(Moku o Lo’e), Kane’ohe Bay, O’ahu, Hawaiian Islands, for
experimental research, strain selection studies and use in
commercial aquaculture projects (Doty 1978; Russell 1983).
However, these pursuits were ultimately abandoned, which
later created problems of biological pollutionas these seaweeds
became ‘invasive alien species’, which then expanded their
range and colonised coral reefs by re-attachment through
adventitious rhizoids (Conklin & Smith 2005; Rodgers &
Cox 1999; Smith et al. 2002; Woo 1999). Previously, the re-
attachment of eucheumatoids was unknown and not consid-
ered a threat when introducing cultivars.

In 2000,K. alvarezii (from the Philippines) was introduced by
the Indian government’s Central Salt and Marine Chemicals
Research Institute, in conjunction with PepsiCo, to the Gulf of
Mannar Marine Biosphere Reserve, South India, specifically for
phyconomic purposes. Five years after its introduction, reports
of ‘invasive’ characteristics were noted (Chandrasekaran et al.
2008; Kamalakannan et al. 2010; Pereira &Verlecar 2005; Tewari
et al. 2006). These authors claimed that the lack of functional
reproductive material, low spore viability and absence of micro-
scopic phases in the life cycle of eucheumatoids, coupled with
the abundance of herbivores, may have limited the spread and
success of this alga. However, after much controversy and nega-
tive publicity, a bioinvasion by K. alvarezii at Kurusadai Island

was considered to be a remote possibility; no further issues have
been reported. Today, commercial farming of eucheumatoids
here and elsewhere in India has contributed to improvements in
livelihood of coastal fishers (Krishnan & Narayanakumar 2013;
Periyasamy et al. 2014a, b, 2015).

Only superficially and endophytically ‘clean’ postquaran-
tined eucheumatoids should provide the ‘seed’ stock for any
new introduction. Consultation with processors and other pro-
ducers is recommended to determine which species and variety/
strain are most suitable for proposed new locations (for details,
refer to Hurtado et al. 2016; Sulu et al. 2003).

To minimise risks of introducing disease or invasive pro-
blems in cultivated seaweeds, stringent quarantine procedures
should be adopted whenever cuttings are transferred across
international borders or even transplanted domestically to
a new location. The reader is referred to quarantine techni-
ques and procedures for seaweeds, and also subsequent suc-
cessful monitoring programmes for pilot-farming trials in
Brazil (de Paula et al. 1998; Oliveira et al. 1995) and Fiji
(Sulu et al. 2003).

DEPENDENCE ON RUDIMENTARY,
LABOUR-INTENSIVE TECHNOLOGY

Since the introduction of commercial farming of Kappaphycus
and Eucheuma in the Philippines, traditional farming techni-
ques have been extremely tedious and laborious. This
included use of stakes and polyethylene rope and soft plastic
rope (TT; Fig. 1) or loops (Fig. 2) to tie bunches of seedlings
along a supporting line. It is now known that the soft plastic
rope used for the TT is not environmentally friendly because
it is a source of unwanted plastic both in the ocean and in
harvested biomass. Furthermore, its economic life is short
because it can be used only once or twice and is not recycled.
It is the practice of the farmers, especially those using the
multiple-raft longline system, to the harvest by cutting the
seaweeds at their point of hanging from the longlines. Thus,
a new soft plastic rope (TT) is needed to tie new seedlings
onto the line for the next growth cycle. Indonesia and
Malaysia adopted the use of soft Kuralon rope (#20) in
order to tie the seedlings, either in singlets or in doublets.
This type of rope seeding is more environmentally friendly
than the soft plastic rope.

A modified raft floating system for Kappaphycus using an
octagonal raft design which articulates when floating at the
surface is currently under trial in India. This is through the
auspices of the Council of Scientific and Industrial Research–
Central Salt and Marine Chemicals Research Institute, in
association with Council of Scientific and Industrial
Research–Structural Research Engineering Centre (Hayashi
et al. 2017). The octagonal design provides a modular struc-
ture that is expandable and easy to assemble and anchor. In
addition, it provides for the free flow of seawater which
replenishes nutrient supply to the plants within the raft area.
Good maintenance of the rafts, as well as regular removal of
drift seaweed and silt from the seedlings, was more efficient
within these structures than with the conventional longline
methods. This robust floatation system was also more suitable
for anchoring in deeper water which also accessed cooler SST
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(Hayashi et al. 2017). However, this type of growth system for
Kappaphycus has not yet been commercially adopted.

The introduction of tubular nets (TNs) for growing
Kappaphycus was first reported by Goes & Reis (2011) in
Brazil. Their tubular net was 5 m long with a 20-mm mesh,
wherein 20 seedlings (c. 100 g each) were positioned (see

Neish et al. 2017). A PVC tube (1 m long and 75 mm wide)
was used as a hopper and was an auxiliary tool to reduce the
labour required to load the seedlings into the TN. This PVC
tube was a sleeve or hopper for one end of the tubular net,
and the seedlings could thereby be fed into the TN, giving
a spacing of about 15 cm between each seedling. Both ends of

Fig. 1. Tying of seedlings using plastic tie-tie.

Fig. 2. Tying of seedlings using Kuralon thread loops.
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the TN were closed and tied to a 3-m floating PVC pipe.
Harvesting consisted of removal of the TN from the raft,
which was then cut open to remove and measure seedling
growth. Similarly, TNs are presently being used in India for
commercial cultivation of K. alvarezii (Mantri et al. 2017).

In terms of efficiency, Goes & Reis (2011) reported no
differences in key performance indicators of daily growth
rate and carrageenan yield, or value characteristics such as
gel strength and viscosity of K. alvarezii grown by either by
longlines or by the TN technique. In addition, there was no
difference in time required to attach the longline to the raft
(second stage). However, significant differences were
observed in required time to tie the algal seedlings onto
the longline and to fill the TN (first stage), and to harvest
seedlings using both techniques (third stage). There was also
a significant difference in the element of drudge labour as
referred to by Neish et al. (2017). The total time required
for the TN method was 54% less than for the TT technique.
Furthermore, the physical materials consumed by the TN
technique cost 20% less than (i.e. 66 m of tubular net and
1 m of PVC tube) than the TT (i.e. 93.5 m of nylon line,
25 m2 of nylon net and 55 m of polyethylene line). Reis
et al. (2015) confirmed the efficiency of the TN system for
growing K alvarezii in Brazil. It was also a desirable tech-
nique for adoption in countries where environmental laws
were introduced to curb seaweed cultivation. This was the
case in Brazil which, until recently, had licenced less than
5% of its available coastline for commercial seaweed culti-
vation (phyconomic activities; Goes & Reis 2011; Espi et al.
2019). TN might also be used in Cuba and Colombia where
introduced eucheumatoid seaweeds have been banned from
coastal waters for fear that they might escape and become
invasive (Hayashi et al. 2017). The growth of K. alvarezii in
TNs in Brazil has now been adopted commercially (Goes &
Feder-Martins 2015; Sepulveda 2016).

The above-cited experiences, show that phyconomic meth-
ods of extensive seaweed farming are still being developed and
refined. These will further enable the simple, effective
mechanisation of tasks which previously involved drudge
labour, and thereby enabling farmers to increase farm pro-
ductivity based on return on unit of effort (Neish et al. 2017;
Vadassery et al. 2016). Key features of such systems are:

(1) Biomass is inoculated via a hopper into TNs, rather
than by manual fastening onto ropes.

(2) Planting and tending of crops during growth, har-
vesting and handling are somewhat mechanised using
simple machinery that can be operated either on
shore or at sea, thus eliminating the most labour-
intensive farm chores which were often the tasks of
family members, mostly women and children.

(3) Biomass loss caused by frond breakage is virtually
eliminated and the impacts of grazers are reduced.

(4) Farming is undertaken within contract farming sys-
tems, known as ‘outgrower’ or ‘nucleus-plasma’ sys-
tems, and managed such that there is traceability and
security in the flow of sustainable, fresh, good-quality
seaweed biomass to processing facilities on a reliable
and predictable daily basis.

(5) The phyconomic principles for eucheumatoids are
firmly based on sustainable ecosystem practices, as
promoted by the FAO (2010).

(6) Phyconomic systems are updated and specifically
designed and engineered to operate in deeper, cooler
and more turbulent waters. This contrasts with the
original systems in relatively shallow water, and
expandsavailable ocean surface that could support
successful phyconomic activities.

STAGNATED RESEARCH AND DEVELOPMENT IN THE
SEAWEED–CARRAGEENAN INDUSTRY

Research and development stagnated in the carrageenan
industry as innovative small to medium enterprises that
once dominated the carrageenan business were purchased by
large, multinational owners during the late 1970s and into the
1980s. This process coincided with the proliferation of semi-
refined carrageenan producers, first in the Philippines and
later in Indonesia, China, Chile and Malaysia. Since the
advent of semi-refined carrageenan technology, considerable
process capacity has been developed based on technology
obtained from employees, consultants and equipment suppli-
ers of previously established manufacturers. This process was
facilitated by multinational owners of formerly innovative
carrageenan enterprises reducing their research spending
and farm development activities, and also discharging many
senior technical and management staff. In carrageenan value
chains, there has been a paucity of innovation leading to new
applications and markets for at least two to three decades. The
last major new applications were developed about 30 years
ago, in the form of iota carrageenan (sourced from Eucheuma
denticulatum) used in dental products, and kappa carrageenan
(sourced from Kappaphycus spp.), used in meat processing
(Neish & Suryanarayan 2017).

The Philippine carrageenan industry had focussed its efforts on
extraction of cultivated seaweed biomass using only single-stream
processes. Whilst initially considered to be cost-effective, with
good gross margins on products, single-stream processing wastes
about 50% of seaweed dry matter and creates high-chloride waste
streams. Much of the value of the seaweed biomass that could be
recovered and sold as products is simply not captured and wasted
unless a multistream, zero-effluent approach (or biorefinery) is
adopted (e.g. Zollman et al. 2019). The extracted colloids, which
can be either a semi-refined or refined carrageenan are used in a
diverse range of processed food products but most typically in
those that are based on or contain ice cream, meat and poultry,
dairy products (including cheese and cream, dairy drinks), non-
dairy drinks (e.g. nuts and seeds) and water-based jellies (see
Hotchkiss et al. 2016). Currently, over 80% of global carrageenan
production is utilised by only three major application sectors: (1)
processedmeats, (2) dairy, and (3) desserts and jellies (Campbell &
Hotchkiss 2017; Shannon & Abu-Ghannam 2019).

Neish & Suryanarayan (2017) described the potential of zero-
effluent eucheumatoid processing. From their data, the
Philippines focused on carrageenan production and, to a lesser
extent, the sale of fresh raw materials (as sea vegetables) and
dried seaweed. Indonesia initiated research and development on
the use of eucheumatoid biomass for biofuels (Fakhrudin et al.

478 Phycologia



2014; Meinita et al. 2012). India provided much-needed innova-
tion with the use of eucheumatoid biomass for the manufacture
of commercial liquid fertiliser/biostimulant (Eswaran et al. 2005)
and bioethanol (Khambahty et al. 2012; Masarin et al. 2016;
Neish & Suryanarayan 2017).

Diversifying eucheumatoid seaweed strains and their derived
products will ultimately bring more revenue along the whole
value chain which, hopefully will soon be embraced in the
Philippines. One shining exception is the launch of a new
range of products (July 2017) which utilised biomass of
Kappaphycus spp. for personal care products; for example,
shampoo, conditioner, body lotion, facial wash and body soap
(N. Morada, personal communication). Such changes are
a prerequisite for innovation and development of more product
applications for an increasingly demanding global market.

PRINCIPLES OF SEAWEED SUSTAINABILITY AND
PHYCONOMIC LESSONS LEARNED FROM THE WORLD
OF CARRAGEENOPHYTES

A number of lessons have been learned the hard way over the
relatively short history of eucheumatoid farming. It is hoped
that this review has outlined the successes and pitfalls which
have both favoured and dogged the production of the biomass
required as raw materials to feed the global carrageenophyte
industry. Paying serious attention to the issues raised may
assist other marine phyconomic activities (i.e. avoidance of
monocropping and disease incidence) such as nori and kelp
production (Kim et al. 2014, 2017).

For seaweed farming to be economically and environmen-
tally sustainable, the following should be implemented:

(1) Responsible expansion of farming areas, accompanied
by investing in research to improve productivity per
unit area.

(2) Productivity improvements through development of
enhanced phyconomic practices and wider adoption
of existing practices. These include improved quality
and diversity of seedling supply, establishment of
quarantine regulations, establishment of land–sea-
based seedling banks and nurseries, and innovative
approaches such as diversified and multitrophic
aquaculture. Additional benefits are likely to be
derived from annual or bi-annual rotation of seaweed
crops and leaving intensive areas of phyconomic
activity fallow on a regular basis in tropical to sub-
tropical waters. Crop rotation is a common agricul-
tural practice which should be adopted as
a phyconomic tool, but one which would also require
more complementary candidate species of for cultiva-
tion than currently available. Thus, new candidate
seaweed species are urgently required for cultivation.

(3) Increased investment in research, development, inno-
vation and commercial extension is urgently required
to meet expected challenges, including disease risks,
climate change and further introductions of nonindi-
genous marine species.

In conclusion, the authors call for stronger collaboration
amongst government agencies, academia and the private sec-
tor. For further phyconomic conservation and sustainability
strategies, please refer to Hurtado (2017), Hayashi et al. (2017)
and Barbier et al. (2019).
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